חקר מרובעים 1 (ריבוע, מעוין, ומקבילית)

-
-
כל תלמיד מקבל 3 ניירות אוריגאמי ממניפת הצבעים.
-
-
הוראת קיפול: לקפל קדקוד לקדקוד נגדי ולפתוח בחזרה לריבוע.(ב-3 ניירות)
-
-
הוראת קיפול: לקפל שתי צלעות של הריבוע אל האלכסון. (ב-3 ניירות)
-
-
הוראת קיפול: לקפל את המשולש הלבן מעל שני המשולשים הצבעונים. (ב-3 ניירות)
-
-
שאלה לדיון: איזה סוג משולש התקבל? נמקו
-
-
תשובה: המשולש הוא שווה שוקיים וחד זוויות.
-
-
משימה: הצמידו את שני המשולשים כך שיתקבל מרובע : שכל הצלעות שלו שוות באורכן. כל זוג צלעות מקבילות שוות זו לזו. וכל זוג זוויות נגדיות שוות זו לזו.
-
-
שאלה לדיון: האם במצולע שמצאתם האלכסונים מאונכים וחוצים זה את זה, והאם האלכסונים חוצים את הזוויות.
-
-
שאלה לדיון: האם זה המרובע שהתקבל?
-
-
שאלה לדיון: מה ניתן לומר על המצולע שהתקבל?
-
-
תשובה: למצולע שהתקבל 4 צלעות שוות באורכן וכל שתי זוויות נגדיות שוות זו לזו ולכן המצולע הוא מעוין.
-
-
שאלה לדיון: במה האלכסונים של הריבוע והמעוין דומים, ובמה הם שונים? נמקו
-
-
האלכסונים של הריבוע והמעוין דומים בכך, שהם חוצים זה את זה ומאונכים זה לזה. האלכסונים הם גם קווי הסימטריה של הריבוע והמעוין.
-
מומלץ לשאול את התלמידים באיזה אופן הם בדקו את האלכסונים.
-
-
האלכסונים של הריבוע והמעוין שונים: בריבוע האלכסונים שווים זה לזה באורכם. ובמעוין האלכסונים אינם שווים זה לזה.
-
-
משימה: הצמידו את שני המשולשים כך שיתקבל מרובע : שבו כל זוג צלעות נגדיות מקבילות ושוות זו לזו. שכל זוג זוויות נגדיות שוות זו לזו. ושהאלכסונים יחצו זה את זה.
-
-
שאלה לדיון: האם זה המרובע שהתקבל?
-
-
שאלה לדיון: בחנו את האלכסונים של המקבילית? מה גיליתם? נמקו
-
-
תשובה: למקבילית אלכסון אחד בין הקדקודים D ל-B. ואלכסון נוסף, בין הקדקודים A ל-C. הוא אינו מסומן באיור זה, אך תוכלו לסמן את שני האלכסונים של המקבילית בדף העבודה.
-
-
משימה: הצמידו את המשולשים כך שיתקבל מרובע שלו זוג אחד של צלעות מקבילות.
-
-
שאלה לדיון: האם זה המרובע שהתקבל? באיזה אופן בחנתם את הצלעות המקבילות?הסבירו
-
-
תשובה: המרובע שהתקבל הוא טרפז, לטרפז זוג אחד של צלעות מקבילות. בחנו את הצלעות המקביליות על ידי הישרים המאונכים.
-
-
משימת סיכום: האם תוכלו ליצור מרובעים נוספים?
- מטרות הפעילות
חקר תכונות המרובעים, אלכסון במרובעים וקווי הסימטריה.
- שם הדגם
ללא דגם
- רצף מומלץ
מומלץ ללמד לפי הרצף המופיע באתר (הרצף על פי תכנית הלימודים).
- על השיעור
התלמידים יתנסו בפירוק והרכבה ובבחינת תכונות ההכלה של המרובעים.
משך זמן פעילות מומלץ: 45 דקות
* משך זמן הפעילות נתון לשיקול המורה, ויכול להשתנות בהתאם לגודל ואופי הכיתה.
- ידע נדרש
מומלץ ללמד לאחר מרובעים ניתוח תכונות, מיון מרובעים, קביעת קשרי הכלה.
- ציוני דרך
כיתה ד – עמוד 33 | מילון מונחים בגאומטריה